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é& SUMMARY

. A “\)A solution 1s presented for the elastic stress intensity factors at the
tips of a slightly kinked, partially closed crack in compression. The solu-
tion is accurate to first order in the deviation of the crack surface from a

Il straight line and ;g\carried out using perturbation procedures analogous to

)[6] and Cotterell and Rice‘T71“”\i\

for the problem of an open crack. Comparison with the exact solution indi-

those of Banichuk [S]i Goldstein and Salganik

cates that the asymptotic solution 1s accurate for values of the angle between

?/

the straight crack and its out-of-plane kinks up to about 20°.
~

N

‘\\\\\\\\‘-—v

Experiments on glass plates contalning pre-existing planar through cracks

1. INTRODUCTION

oriented at an angle to the direction of the axial compression have revealed
that the relative sliding of the faces of the pre-existing cracks does not
result in co-planar crack growth, bu'. rather produces at the tips of the pre-
existing cracks small tension cracks which deviate at sharp angles from the
sliding plane [1-4]. These experiments are designed to be models for the pro-
pagation of cracks in rocks in compression. In this paper, we are concerned

with the calculation of stress intensity factors at the tips of the kinked

open extensions of a closed sliding through crack. The same method can be
extended to a curved crack with several closed sections. The solution ob-
tained is accurate to first order in the deviation of the crack surface from a
straight line drawn between the kink tips and is carried out using perturba-
tion procedures similar to those used in Refs. [5-9] for the problem of the
open crack. The results can be stated in terms of known solutions for a

single straight crack or a co-linear array of straight cracks.
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A complete solution to the problem of the sliding kinked crack has been
glven by Nemat-Nasser and Horii [3], who used a continuous distribution of
dislocations to model the crack and its kinks. In order to find the stress
intensity factors, thef solved numerically a singular integral equation for
the dislocation distribution. In contrast, we can avoid the solution of the
singular integral equation by using the results of the asympfotic analysis for
the stress intensity factors. However, the validity of the asymptotic solu-
tion is limited to small deviations of the crack surface from a straight line.
Comparisons with the exact solution given in Ref. {3] indicate that the first
order solution for the mode I stress intensity factor is accurate for values
of the angle between the straight crack and its out-of-plane kinks up to about

200.

2. GENERAL FORMULATION OF THE PROBLEM

2.1 Formulation of the boundary value problem

Consider an infinite plate of a homogeneous, isotropic, linearly elastic,

brittle solid contalning a curved crack on y = A(x) , with its tips at the

y

positions x = +a (Fig. 1). A uniform state of stress ¢ o> and o,

xx ? vy
is applied at infinity, with cy; < 0 and cx; < 0 , where tension 1is

regarded as positive. The corresponding two-dimensional boundary value

problem is given by oaie

. o ) eosy
' - IN8PECTen
) o D
1,3 = O | o
//47‘(577/56
Zeij =ug gty g in Vv, : (1)
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‘r

G35 = o1y at infinity, (2)
Opn(Xs A) = opq(x, A) =0 on the open portions of the crack, (3)
Ong(x, N) = po,(x, A) on the sliding portions

up(x, A) = ug(x, \) of the crack, (%)

where 91§ » €14 and uy are the stress, strain and displacement fields in
the region V occupied by the body, Cijkl is the fourth order teansor of the
elastic moduli, Cpn and 0,, are the normal and shear tractions at the
crack surface, u, 1s the displacement in the direction normal to the crack
surface, p 1s the coefficient of friction, A,i is aAlbxi and the super-
scripts plus and minus denote the value of the indicated quantity on the upper
and lower surfaces of the crack. Note that the open and sliding portions of
the crack are, in general, not known in advance and thelr determination be-

comes part of the solution.

2.2 Swmall-parameter expaasion

The essence of the approximation we use is that the solution to the pro-
blem with the curved crack is close, in some sense, to the solution of a
similar problem for a straight crack. In fact, we shall use the solution to

the following problem, involving a flat crack, as the leading or zeroth order

approximation in our expansion. Let 2(0) s g(o) and 2(0) be such that
5$0)
= 0
%31,3
P (0) 0 )
1_‘1 ui,j + uj,i inV (5)
&0 . (0)
93 = Cijratis
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and ai?) - 01; | at infinity (6)
(0) - 4(0) -
d&y (x, 0) axy (x, 0) =0 on the open portions of the crack, (7)
c(o)(x, 0) = pd(o)(x, 0) on the sliding portions
xy yy |
u;(x, 0) = u;(x, 0) of the crack, (8)

where V' 1is the plane with a straight slit lying on the x-axis from -a
to a . If the slope of the actual crack, A'(x) , has order of magnitude
€ < 1 at its largest, then we can seek a perturbation expansion iIn € for

the solution to the problem of the curved crack, such that

g = o'® + gD 4o, . (9)

£=e0 + D roed, (10)

g =g+ gD voey (11)
where g(l) s 5(1) and g(l) are all 0(e) compared to the leading order

terms. We mention that A'(x) = 0(e) also means that A(x)/a = 0(g) , be-
cause A(#a) = 0 . What remains now is the finding of the equations and the

(1 (D LD

boundary conditions governing ¢ and « We note at this
stage that our approach is identical to that of Cotterell and Rice [7], except
that they addressed the problem of a crack open everywhere., Furthermore, they
found their solutions and expressed their expansions in terms of
Muskhelishvili's [10] complex potentials. We prefer to work in terms of fun-

damental quantities, although it is entirely possible that the partially

-_..' e \. ..- \- -~ \- \' _... :._
d s{.\.‘f&fhf.a.fsz..m': ALY




closed, slightly curved crack can also be solved by a variation of the complex

variable treatment of Cotterell and Rice [5].
(1) (1) (1)

We return now to the question of finding g » £ and u e In
order to find the equations and boundary conditions governing g(l) s 5(1)
and u » we substitute the expansions (9)-(11) into equations (1l)-(4).
We also use the fact that both A(x) and A'(x) -are O0(e) to write
expansions in € for the tractions and displacements on the crack surface y
= \(x) . Using a tensorial transformation, we find that the normal and shear

tractions on the actual crack can be written as

Oan(Xs M) =7 [0 (x, M) + 0 (x, V)] +

+-% [cyy(x, A) - cxx(x, A)lcos26 - axy(x, A)sin28 ,

' 1
ans(x, A) cxy(x, A)cos26 +3 [ayy(x, A) - axx(x, A)lsin20 ,

where 6 = \'(x) + 0(63) + Then, using a Maclaurin series expansion in 0

for sin20 and cos20 , we find

Oanlx, A) = ayu(x, X) = A" (x) gy (x, A) + 0(e?)

Oas(Xs A) = Gk, A) + A" () [0y (x, V) = oy (x, V] + 0(?) .

If we now write Maclaurin serles expansions in y for o, , Oyy and Oxy »

the last two equations bhecome

aox (x, 0) 2
Opa(6s M) = 0 (x, 0) = A(x) —-E%Gr——-— 2A'(x) o, (x, 0) + oge ), (12)
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bcxx(x, 0)
om(x’ K) - axy(xo 0) = )‘(x) —"a—x"'—'.' l'(x)loyy(x. 0) -

- o _(x, 0)] + oe?) (13)

where we-have also used the equilibrium equations aaxy/ay = -chx/bx and
aayy/ay = —acxy/ax .

In a similar way we can show that
un(x, A) = uy(x, 0) +A(x)eyy(x, 0) = A" (X)uy(x, 0) + 0(e?) . (14)

Using the expansions (9)-(11), equations (12)-(14) can be written as

(0)
d0 (x, 0)
- <0 (1) -3 xy -
o (x, \) ayy (x, 0) + oyy (x, 0) - X(x)

%
- 21'(x)dig)(x, 0) + o(e?) , (15)
o (x, A) = dig)(x, 0) + ci;)(x, 0) - A(x) Eféggéf;_ii .
+ k'(x)[c§3)(x, 0 - D, 01 + 0ted) , (16)

v (x, A) = u§°)(x, 0) + uil)(x, 0) + k(x)sgg)(x, 0) -

- \'(x)uio)(x, 0) + 0(82) . (17)

Finally, substituting equs. (9)-(11) and (15)-(16) into the boundary value

problem formulated in Section 3.1 (eqns. (1)-(4)), taking into account (5)-(8)
(1) , (1)

and separating zero and filrst order terms, we find that ¢

2(l)

and

should be the solution to the following boundary value problem
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o e
- :lj 1jk1 ke J
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‘ with
‘.‘s
SR
AN
N
_'.:‘,: i;) 0 at infinity, (19)
- og)(x, 0) =0 on the open portions of the crack, (20)
. (1) ¢ d . (0) . (0) -
d Oy (x,0) hogy (x,0)+\(x) i [Txx (%50) Moy (x,0)]
" - A0 [ (142 )a(o)(x 0)-0{9 (x,0] for |x| <a, (21)
.%f.
" 1 + 1 -
- u; )(x, 0) -~ u)(' )(x, 0) =
0), .+ _(0), - 0
5: - A {0 (5,006 (x,001 01D x,0H- Pixo1 2
- ¢
o on the closed sliding portion of the crack.
::::_: 3. FORMULAE FOR THE STRESS INTENSITY FACTORS
_._x Following Cotterell and Rice [7], let w be the angle of the crack tip
::‘:: at x =a , given by w =A'(a) to first order. The normal (o,,) and shear
{'E: (op,) stresses acting along the prolongation of the crack at a small dis-
.' tance r from the tip at x = a are obtalned by setting A\ = wr + 0(53) =
A :
- w(x - a) + 0(83) into equations (15) and (16). So,
-




| bo’(‘o)(x, 0)

(1)} (0) (1) 2
s ™ dyy (x,0)-w(x~a) ———1%5;————- -Zwaxy (x,0)+cyy (x,0)+0(e") ,

bo"(‘:)(x, 0)

s *olot) (x,0)-55) (x,0) 1+o (L) (x,00+0(e?) .

o - o)(‘g)(x,O)-w(x-a)

Then, the stress intensity factors can be calculated as

s < z(0) (1) (1 2
K, = iig+ (VInr o ) =K ° + K S+ K+ 0(e7) , (23)
Ry = lm, (Zr o) = KO + kD kD 4 oehy (24)

r»0

where K%O) R Kgg) ’ Kgl) and Kgi) are the stress inteasity factors for

the zeroth (eqns. (5)-(8)) and first order (ecns. (18)-(22)) problems, and

aoio)(x, 0)

D o w2 i_i;ran+[(x - 32 ~ . 2x - ayl/? ",(;g)("’ ]
(0)
. 30 "(x,0)
ki = /2% Un {0 2y e 2D (0 - oD x0])

xX>a

Using the last two equations and a Williams [11] expausion for the near

crack tip stress field, we can show that

D 2 _3 (0

1w 2 Ir (25)
and KSZ, - -;- w KiO) . (26)
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From the formulation of the first order problem (eqns. (18)-(22)), it is
clear that this can be considered as the superposition of the following two
problems; problem (i) with a prescribed normal displacment and zero shear
traction on the sliding portions of the crack and with the rest of the crack
traction free, and problem (ii) with a prescribed shear traction and zero
normal traction everywhere on the crack face. Thus, knowing the solution of
the zeroth order problem (eqns. (5)-(8)) and having determined the sliding and
open portions of the crack, we can determine Kgl) from the solution of
problem (1) mentioned above.

As far as Kgi) is concerned, 1t'is obvious that only the prescribed
shear tractions at the crack surface of problem (ii) mentfioned above that have

opposite directions on the upper and lower surfaces of the crack have a non-

zero contribution to Kgi) « With the definition
—_ 1 + -
A(X) --2' [A(X, 0 ) + A(xo 0 )] ’

k1) {g known ( [12]) to be

II - nown eoga, to

(1) 1 o) a+x
KII = - ——— I O’xy (x) ¥ 2 - x dx , (27)
ma -—a

where, according to (21),

00 =5+ a0 150 - s

g—x' “’xg)""] -

-l s 255800 - 500 . (28)

On the other hand, it 1is possible that the stress field of the zeroth order
(0)

problen, g , has the characteristic 1: elastic singularity at several
/r
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points in the interval |x| < a ; since derivatives of g(o) with respect
to x are involved 1n the formula for ;i;) (eqn. (28)), non-integrable
singularities will appear in eqn. (27). To overcome this difficulty, we

assume, for the moment, that the stress components o(o)(x, 0) are all

i3
bounded and differentiable with respect to x in the interval le < a ; this

makes o(;)(x, 0) also bounded on the crack face. 1In the case where

ig)(x, 0) are singular at some point in the interval l I < a , the singu-

()

laritles are rvemoved by replacing 9y (x, 0) by bounded functions that

reduce continuously to zero (or any other value that makes (0)(x, 0)

k.- . ij
- ;: continuous) over distances closer than a small distance § to the point where
e
Dty
> the singularities appear. Later it is shown that it is possible to let &
.
i{{ tend to zero, i.e., effectively to remove the restriction of bounded aund
et . (0)
v differentiable Gij (x, 0)
L We return now to the calculation of Klil) « With the above coatinuity
é;?, assumptions on aig) we can integrate by parts eqn. (28) to find
o
)
gll'.) -1 f {pE(I) A+ 2u )—(0) E'(m(:)] +
};:; /ma -a yy
I
e «0) _ —0)y} ,EE% |
e Y 1, - s 31T X -
- + [ A+ 5 A (a)](oxx uoxy 1} P dx (29)
o s —
..-.._- x + - -
S -L g (5(,:) Al 21'(a) - 2 (2 x;)‘ 2) I dx .
A /na -a (a - x)
-9, d
-7 It should be noted that aA(x) + (a-x)A'(a) = a;-[ak(x) + (a=x)A'(a)] =0
- at x = a , so there is no divergence at the upper limit of the second inte-
F:i' gral in (29). It can also be secen that an integrable singularity can exist in
0.
o (?)(x) , provided it is not at x = %a , as was also noted in [7]. Specifi-

cally, ian terms of our earlier discussion, & can be shrunk to zero aad in




& ,
< that limit, the result of equation (29) for Kgi) approaches the result

- obtained by inserting directly into (29) the singular, actual E( )(x) Such
H‘ considerations, based essentially on the fact that the final result of equa-
ﬁ;t tion (29) for Kgi) contalns —(j)(x) only (and not derivatives with respect
&5_ to x), allow us to conclude that (29) is valid for all integrable ;(g)(x)

iﬂ (L{.e., not necessarily bounded or coatinuous).

We mention again that part of the solution to our problem is the finding

of the sliding portions of the crack. Having found the sliding portions of
the crack and the solution of the zeroth order problem, we can proceed to
solve the first order problem and use the formulae given in this section to

find the first order correction to the stress intensity factors.

4, THE PROBLEM OF THE KINKED CRACK

A particular case of the curved crack is the kinked crack shown in Fig.

2., The shape of the kinked crack is given by

me 3 (x + a) for ~a < x< -b,
Ax) = mx for lxl <b,
mb__ ¢ ) £ b <
b—‘_—a- X — a or < X a .
In this case, w = A'(a) + 0(63) = me = + 0(53) .

Following our previous discussion, we assume that both m and

n
b - a
are 0(e) , which is equlvalent to assuming that A'(x) is 0O(e) . We

mention agaln that we are concerned with the case where both dy; and ox;

are negative and so, it can be assumed that the portion of the crack in the

interval 'xl € b remains closed during the application of the load. Thus,

- S .;. e
e T, ROURIIEIC S
A _1 Y A\ i ) _l\\-l'_l‘..!i'_l. ;'__I_A\.A ..‘..

AR SRR IR U SO oo I
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the sliding portion of the crack is the ianterval |x| < b and the open por-
tions are the intervals b < Ix' < a . Of course, there is a possibility that
the applied stresses 613 and the orientation of the kinked crack are such
that the whole crack remains closed and does not slide. To check whether this
happens, we can solve the problem assuming that the crack opens in the iater-
val b < lxl < a ; if the calculated K; at the tips of the kinks is
negative, the tip of the kinks remain closed and the assumption that the crack

opens in the whole intervals b < |x| < a 1s in error.

4.1 Solution of the zeroth order problem

The zeroth order problem can be considered as the superposition of the

four problems shown in Fig. 3, where F(x) 1is the distribution of the

&0
yy

the shear stress on the crack face, dig)(x, 0) = pF(x) , opposes the relative

(x, 0) stress component of problem no. 1. We note that for problem no. 4

sliding of the crack faces, The quantities of interest for each of the four
problems mentioned above are given in the following. In the solutions pre-

sented in the rest of this section, conditions of plane strailn are assumed; in

order to get the plane stress solutions we simply replace v by i "

4.1.1 Problem no. 1

The solution to tais problem has been given by Erdogan [5] and is as

follows

@

g
P x, 0) = ¥y [a2 Z) 021 - pey (30)

K(k)
/b2 - x2)(a% - x2)

F(x) - ¢ @
(x) gy

]

cig)(x, 0)
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o

)

l.\

+ -
.__«. u’(‘o)(x, 0') = u)(‘o)(X. 0),
L (0) + (0) - .

_.:j eyy (x, 0') = syy (x, 0) for lxl <b;
RS

o

e

. and

(0) -

. A (x, 0) = ~Oyy for b < Ix' <a,

Y
: where K(k) and E(k) are the complete elliptic integrals of the first and
'- —————

Dy second kind respectively and k = /1 - bz/a2 .

Also, the stress intensity factors for this problem are
N

o D ——
N o Yna
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1 k K(k)

LS
{

(0) _

::%: and KII 0.
e

v ' Problem no. 2 consists of a plane strain tension. The solution to this
‘-:_: problem 1s quite obvious; therefore we proceed to problem no. 3.
(3 4.1.2 Problem no. 3

o

> The solution to this problem is known (e.g., [12]) to be

(0) 2 _ @ 2%

A Txx (x, 07) = % ny 5 5 ’
Ya® - x
8
e (0) £ (0) .
e

o
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c
. X e(o)(x, 0*) = &y 2L X s
e Yy G 5 2
/a2 -
o a b3
L -
N (0) 3 %y , 2 _ 2
and u (x,0)=t(1—v)-al/a - X for ‘x'(a,
Z;j
_'.'_:f where G 1s the shear modulus of the material.
'.:'
. In additionm,
o
i -0,
Wl
3 0 _ =
Dl and K =0 /na .
I1 xy
N2
{ 4.1.3 Probleum no. 4
::'.: The solution to this problem is derived in Appendix 1 and is as follows
Z'_Z:Z
) o,(o)(x’ Ot) = 4o g 2x ,
xx Y 3 3
:.'_,‘ va® - x
- 0
= o x, 0) =0,
»
0
.-f'..
.J'._- P o™
A W
. 0 3 X
.: ei’y)(x, 07) = Fv ny - R
P /Ya® - x
L.~
20
s
(0) £ k 7 2
.‘ u (x,O)—+(1—v)—6u/a-x for |x|<b,
-
:‘_i:\ and
0.
N S O A R N R R R R R SRR S |




() _ M E(k)
K1y -—X—0 ~ kR0 1.

4.,1.4 Superposition

Superimposing the solutions of the four problems shown in Fig, 3, we find

;ﬁg: the quantities of interest of the solution to the zeroth order problem to be
—0) _ L ®
O x (x) = F(x) oyy to (31)
0
E(yy) - F(x) , (32)
0
E{W)(x) = WF(x) , (33)
0" - o ”
eDx, 0") - e{Dx, 07y =2y XL_—¥¥ X (34)
. yy yy G 3 5
,.:__:: va© - x
S - Yy = Py
. u)((o)(x, o, . “(x, 07) = 2(1 - v) =& G /a? - x* (35)
,:f for |x| < b; and
~ FG) =0+, (36)
xx yy = xx
et
0
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—(0) - =(0) -
oyy (x) ny (x) =0 (37)

for b < 'xl {a.

Also, the stress intensity factors for the zeroth order problem are given

by
© Ta
©0) _ %yy" E(k)
kS -1 - e ], (38)
Kég) = (ox; - pdy;) /ra + pKéo) . (39)

4.2 Stress intensity factors for the first order problem

As discussed in Section 3, the first order problem can be considered to
be the superposition of the two problems sho;n in Fig. 4.

The mode 1 stress Intensity factor Kgl) is determined by solving
problem no. 1 in Fig. 4, which is actually the problem of the opening of a
finite crack by a rigid wedge. The general solution to this problem has been
given by Markuzon [14]., Taking into account eqn. (22) and the solution of the

zeroth order problem derived in the previous section, we find that, for our

particular case, the shape of the wedge, h(x) , is given by

_ O RO 4.2 2
2h(x) = ul(x,0")-ull (x,07) = om LI UM ] <L )
2 2
Ja© - x

Using the above formula for the shape of the wedge and Markuzon's [14]

solution, we find the mode 1 stress intensity factor to be (see Appendix 2)

m k3 - (2 - v)k2 + (1 - 2v + 200k + v (41)
1 -v 21,2 ’

(n @
K1

= =(g > - po ) /ra
(xy uyy)
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B! DR

where

cal g —K(Ok> + [(1 + 20)K(k) = 2ECI) ]k + 2v ,
K(k) 2k
a 2 2 2 2
+va | x/x” - b" - a;a - b dx .
b a® - x /2 - xByE - b))

We proceed now to the calculation of the mode II stress intensity factor

(1)
K11

problem no. 2 in Fig. 4 or, equivalently, using eqgn. (29). We note that

for the first order problem, » which can be determined either by solving

Gﬁg)(x) ’ Eig)(x) and Eig)(x) all have the characteristic 5: singularity
at x = b ; but as discussed in Section 3, eqn. (29) for Kgi) rcan still be
used, provided that the singularities are integrable, which is indeed the

case. So, using the solution of the zeroth order problem derived in the pre-
vious section and applying eqn. (29), after some length}, but straightforward,

integrations we find

(1 - %%vsin—l-g ) + 2

2

n _ ) © W ® —
K WRyT (dyy Gxx) /na L /na +

mb
I1 - a

b

2
© —~—n _ e 2, E(k) 1 - _ E(k)

where K is given in eqn. (40).

(1)
I

5. DISCUSSION AND COMPARISON WITH THE EXACT SOLUTION

The obtained asymptotic solution for the stress intensity factors at the

tips of a kinked crack 1s of the form

K, = KEO) - %-w Ki?) + Kgl) + 0(82) ,
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«x(0) . 1 (o) (1) 2
Kyp Kpp” v ek H K+ 0D,

11

(41) and (42) respectively. Equations (41) and (42) show that Kgl) and

Kgi) depend on Poisson's ratio v . This means that they have different

where K%O) . Kgg) . Kil) and K(l) are glven in equations (38), (39),

values under plane strain or plane stress conditions. On the other hand, it
is known that, in the absence of body forces, the stress intensity factors for
traction boundary value problems are the same under plane strain or plane
stress conditions and independent of the elastic constants. The reason that

v enters the expressions of the asymptotic solution for the stress intensity
factors is that the displacement field of the zeroth order problem, which
depends on v , was used to formulate the first order problem. As a result,
the in-plane components of the first order correctign to the stress field and

the corresponding corrections to the stress intensity factors depend on v .

§1) and K(l)

II show that their depen-

However, numerical calculations of K
dence on v 1is very weak and that their values for plane strain and plane
stress conditions are practically indistinguishable, which validates the first
order correction.

Next, we apply our results to the problem of a infinite plate containing
a kinked crack oriented at 36° to the overall compression (Fig. 5). The exact
solution, given in Ref, [3], and the asymptotic results for Ky are plotted
in Fig. 6 versus the angle between the straight crack and its out-of-plane
kinks, 6 , for several values of the ratio of the length of the kink, 2 , to
the length of the straight crack, c¢ . In general, the region of accuracy of

the asymptotic solution depends on hoth £/c and A , because the values of

m and w 1in our analysis, which must be small for the asymptotic solution to
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be valid, depend on both 2/¢c and 6 . But, roughly speaking, the asymptotic
solution is seen to be accurate for values of 6 up to about 20°. Unfortu-
nately, the values of Kjyy for small values of @ are not given in Ref. [3];
so, comparisons of the asymptotic result for K;; with the exact solution

were not possible.

6. CLOSURE

A first order solution has been obtalned for the stress inteasity factors
at the tips of the kinked extension of a sliding crack. The validity of the
asymptotic solution is limited to kinked cracks with small deviations from
stralghtness. There are several situations where this deviation is indeed
small. As an example, consider the case of a glass plate or a rock block con-
taining several small cracks at different orientations. Under the application
of a compressive load, the cracks with an angle to the direction of compres-—
sion, Yy , greater than Yo = tan-l-& will remain closed and only those
with y <y, can, possibly, slide and propagate. It is also known ([1]-[4])
that these cracks tend to propagate towards the direction of compression. So,
if the coefficient of friction, p , is very high (which makes Ye small) the
crack propagation will create kinked cracks with small deviations from
straightness., For situations like these, the asymptotic results can be used
to determine the stress intensity factors and to make predictions for the
direction of further propagation. 1In addition, fatigue due to non-
proportional loads can cause the development of cracks that are not straight
and are partially closed, although open at the tip. For cases where the
deviation from the straight line is small, the methods devised here can be
used, although a criterion for determining where the closed portions lie would

have to be developed.
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APPENDIX 1

The problem no. 4 in Fig. 3 is formulated in terms of the complex
potentials ¢ and ¢ of Muskhelishvili [10]. The stresses and displacements

can be expressed as

Opx + Oyy = 2{¢'(2) + 8'(2)] , ' (43)
Ogy = Oy + 2o, = 2{z"(2z) + ¢'(2)] , (44)
26(u, + tuy) = xd(2) - 267(2) - ¢(2) , (45)

where « = 3 - 4v for plane strain and k = (3 - v)/(1 + v) for plane
stress, the overbar denotes the complex conjugate and prime staunds for
differentiation with respect to z = x + 1y

Introducing the analytic function
(z) = z6'(z) + ¢(z)

eqns. (43)-(45) can be written as

Oxx * Oygy = 2[6'(2) +67(2)] , (46)
gy = Fxx + Ziaxy = 2[(z - 2)8"(z) - Q(z) - ¢'(2)] , (47)
YC: 2G(ux + 1uy) =xd(z) - (z~-2) ¢'(z) - Q(z) . (48)

e e e e e ot Gt
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For a prescribed shear traction ny(x. 0) along the crack face, it is

known (e.g., [12]) that

0'(2) = Q'(z) = - 1

. (49)

2% /zz - a

In our problem

pF(x) for |x| <b,
o ., (%, 0) = (50)
Y 0 for b< |x| <a,

. where F(x) 1s defined 1in eqn. (30). Substituting (49) into (50) and

carrying out the integration we find

0'(2) ﬂﬁ'(z) - _%uo w{[ZZ - a2 E(ll:)] : 1 - —_Z— } .
yy K(k) 7 2. 2 2 72
/(z° - a™)(z" - b°) vz - a
Finally, using eqns. (46)-(48) and the definition
K; + 1K = lm, Y2r(x - a) [cyy(x, 0) + icxy(x, 0)] (51)

x>a

we find the results shown in Section 4.1.3.

APPENDIX 2
The solution to the problem of the opening of a finite crack by a rigid
wedge has been given by Markuzon [l4]. 1In terms of Muskhelishuili's [10]

complex potentials, the solution 1s shown to be




24

dx Co

¢'(z) = 5‘(2) = X - z + X(z)

X(x)

2G 1 Ib dh

n(x + 1) X(2) b dx (32)

where h(x) 1s the function determining the shape of the wedge of length 2b

(see Fig. 4), X(z) = /(a? - zz)(b2 - zz) and the constant C, Is determined

from the equation

a b
1y 1 [ [ £ - He? - ) 25 Jax -
b el - 2k - bl -
_k + 1 K(k) _
2G a Co = h(d) .

As discussed in Section 4.2, the shape of the wedge for our problem is

given by
<« ©
6. - uo _ 2 _ 2
h(x) = m Xy . yy (1 v)a X , le <b. (53)
/a® - x
Substituting (53) into (52) and carrying out the integrations, we find
—= ma Gx; - udy;
' = 0 = -
6'(z) Q'(z) 2(1 = v) 5 5 5 5
Y(z° - a”)(z" - b7)
[ z/z" - b -~ ava® - b2 2% - z/z2 -b ava? + b2
v + - + C]
2 2 2
z°- - a a 2a

where

Sl KGOk + [(1 + 29)K(k) = 2ECk) Tk + 2v
KCK) %

c

. Ia 5152 - b%;: a/a2 - h2 dx } .
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Finally, using eqns. (46), (47) and (51) we find the stress intensity factor

to be

3
K = (e - ua") /73 B - @-vlr (1 -2 % 20Kty
xy yy 1 = 2k2
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~ Fig. l.. Infinite plate containing a curved crack.

Fig. 2. Infinite plate containing a kinked crack.

‘§“ Fig. 3. Superposition used in the solution of the zeroth order problem.

;§f Fig. 4. Superposition used in the solution of the first order problenm.

f Fig. 5. Infinite plate containing a kinked crack oriented at 36° to the
overall compression,

;& Fig. 6. Stress intensity factor at the tips of the kinked crack shown ian Fig.

o 5 (p = 0.3).
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